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Planck-Mass-Rotons Cold Dark Matter Hypothesis 

F. Winterberg  1 
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Sakharov's conjecture that the vacuum is densely occupied with Planck-mass 
maximons is taken as a model to explain the missing mass as rotons of a superfluid 
made up from the Planck-mass maximons. Because rotons require a finite 
excitation energy, they not only can account for the missing mass but, in addition, 
can mimic a small, positive cosmological constant. According to Sakharov, the 
large vacuum energy of the Planck-mass maximons is compensated by "ghost 
particles." In the proposed superfluid vacuum model, we assume that the 
compensation is done by a large, negative cosmological constant instead. 

1. I N T R O D U C T I O N  

There is growing evidence that the observed large-scale structure of  the 
universe can best be described by the combination of a cold dark matter 
component  and a small, fine-tuned cosmological constant. Because the 
required small cosmological constant is difficult to reconcile with our present 
understanding of elementary particle physics, Weinberg (1992) has entertained 
the "anthropic principle" for an explanation of this peculiarity. 

Quantum field theory has to make the assumption that the energy- 
momentum tensor of  the quantum fluctuations of  the vacuum are compensated 
by a gravitational field action S(0), where 

s(R) - 16 a R'f-2-g d n  (1.1) 

is the Einstein-Hilbert  gravitational field action (Landau and Lifshitz, 1971). 
It was suggested by Zel 'dovich (1967) that a small disturbance of  this equilib- 
rium could lead to a finite value of the cosmological constant. Following 
this suggestion, it was argued by Sakharov (1968) that by expanding the 

I Desert Research Institute, University and Community College System of Nevada, Reno, 
Nevada. 

399 
0020-774819510300-0399507.50/0 �9 1995 Plenum Publishing Corporation 



400 Winterberg 

gravitational field Lagrangian in a series of powers of the curvature (A, B 
are numerical constants of order unity) 

~ ( R ) = ~ ( O ) + A h R f k d k + B h R 2 I d k + ' " k  (1.2) 

one can assign the first term in (1.2) to the cosmological constant and the 
second term to the action (1.1). The third- and higher-order terms lead to 
nonlinear departures from Einstein's gravitational field equations of no inter- 
est here. Comparing the second term with (1.1), one has 

r 

G = ok0 (1.3) 

16~rAh J0 k dk 

where the cutoff wave number is determined by the numerical value of G: 

f~[0 k dk ~ k 2 ~ c3/hG (1.4) 

For the cutoff wave number ko, one thus finds that ko = 1/rp, where rp = 
(hG/c3) 1/2 ~- 10 -33 cm is the Planck length. Particles belonging to the wave 
number ko ~ 1033 cm - | ,  with a mass ofmp = (hc/G) 1/2 -=-- 10 -5 g, have been 
called "maximons." They have been proposed by various authors as the 
heaviest hypothetical particles in nature. To describe the vacuum in a way 
consistent with the Lagrangian (1.2), Sakharov suggests as a simple model 
a vacuum densely filled with maximons, one maximon per Planck-length 
volume. To cancel the otherwise huge vacuum mass density (cS/hG 2 ~ 1095 

g/cm3), he assumes that there is an equal number of compensating "ghost 
particles." Sakharov's model is consistent with the qualitative consequences 
of quantum gravity arrived at by Wheeler (1968) and Hawking (1978). 

To simplify Sakharov's model, we propose that the compensating ghost 
particles are replaced by a large, negative cosmological constant of the order 

- l i r a .  It, too, can cancel the large vacuum energy of the maximons. We 
furthermore propose that the maximons can be described by a zero-tempera- 
ture superfluid. 2 

Assuming that the maximons have contact-type interactions, they can 
be described by the following nonlinear Schrrdinger equation known from 
the theory of superfluidity: 

ZThe idea that the vacuum is a superfluid but instead composed of fermion-antifermion pairs 
was suggested some time ago by Sinha e t  a l .  (1976a,b; Sinha and Sudarshan, 1978). 
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ih Ot~ h z ___ _ _ _  V2~ + f 2 ~ , ~ 2  (1.5) 
Ot 2me 

In (1.5), f2 is a coupling constant, the strength of which determines the 
assumed local interaction between the maximons. As will be shown, this 
vacuum model can explain the missing mass and a fine-tuned cosmological 
constant to result from the rotons of this superfluid. 

In its hydrodynamic form, (1.5) becomes 

dv 1 
- V ( V  + Q)  

dt me 

On 
- -  + V . ( n v )  = 0 
Ot 

(1.6) 

where 

ih 
nv = - - -  [t~*Vd~ - t~V~*] 

2me 

V = f2n (1.7) 

h 2 V2,fn 
Q =  

2mp 

Introducing the velocity potential ~b 

v = - v +  (1.8) 

and the function 

1 ( 
W(n) = ___z_ | (V + Q) dn 

nmp ) 
(1.9) 

we can derive the hydrodynamic equations (1.6) from the Lagrange density 

I1 ] ~ l  = nmp • - ~ (V~b) z - W(n) (l.10) 

Variation with regard to n leads to Bernoulli's equation 

1 1 
$ - = ( v + )  ~ - - -  ( v  + Q)  = o (1 .11)  

Z mp 
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Euler's equation (1.6) is obtained by taking the gradient of (1.11). Variation 
of (1.10) with regard to dp leads to the equation of continuity: 

- h  + div(nV~b) = 0 (1.12) 

2. PHONONS AND ROTONS NEAR THE PLANCK SCALE 

Keeping in ~ t  only terms quadratic in n, ~b, or the product of n and ~b, 
one obtains the approximate Lagrange density 

no 1 fZn2 (2.1) /~2 = nqb - -~-(7~b) z 2 mp 

where no = l / r  3 is the number density of the maximons, with n < <  no a 
small disturbance imposed on no. Variation of (2.1) with regard to n and ~b 
now leads to 

$ - ( f2 /mp)n  = o 

-~i + noV2~ = 0 (2.2) 

from which, by elimination of n, one obtains the wave equation 

_ 1  ~ + Vzqb = 0 (2.3) 
c 2 

with 

c 2 = nofZ/mp (2.4) 

Requiring that the wave propagation velocity is equal the velocity of light, 
one finds from (2.4) that f 2 = hcr~, because of no = l / r  3 and mprpc = h. 

The spectrum of the densely-packed maximons, therefore, shows the 
typical feature of the phonon spectrum known from the theory of superfluidity. 

Besides phonons, the spectrum has rotons. They are located below the 
Planck energy mpc 2 = hc/rr,. Following Pitaevskii (1956), we can most easily 
derive the rotons from the Hamilton density 

_ nomp v2 + mpc 2 n2 (2.5) 
2 2n0 

With the expansions 

rl : ~ l'lke ik'r 

V : ~ vke ik'r 
(2.6) 
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the linearized continuity equation 

+ noV'V = 0 

becomes 

hence 

(2.7) 

nk + inok'v ~ = 0 (2.8) 

~n0mP \ r~ {[r~kl2 ) 

(2.9) 

mp 

where to = kc. It follows that the assembly of maximons behaves like an 
assembly of harmonic oscillators of frequency to. The potential energy of a 
harmonic oscillator in its ground state is (l/4)hto, and one obtains from (2.9) 
for each mode 

1 _ mp 
no ~ hto 2n~2 toZlnkl2 

Putting to = E/h, one thus finds 
h2k 2 

E -  
2mpS(k) 

(2.10) 

(2.11) 

where 

S(k) = I nkrZ/n~ (2.12) 

is the Fourier transform of the liquid structure function of the densely packed 
maximons. The corresponding expressions for superfluid helium were derived 
by Feynman (1955). For k < <  kp, where kp = mpc/h, one has S(k) = 
(1/2)k/kp, and for k > >  kp, S(k) = 1. For ko <~ kr,, S(k) goes through a 
maximum, with E having a minimum. It is this minimum which is associated 
with the rotons. Without the assumed discrete structure of  the maximons 
densely filling the vacuum, there would be no rotons. 

If the energy of the maximons is exactly compensated by a large, negative 
cosmological constant, the total vacuum energy is zero, making the flatness 
parameter g~ = 1. 

3. P L A N C K - M A S S  R O T O N S  A S  C O L D  D A R K  M A T T E R  

The medium composed of the densely packed maximons is, for tempera- 
tures small compared to the Planck temperature Tp (s = mpc2), superfluid. 
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Under these conditions, one has the typical phonon-roton energy spectrum 
shown in Fig. 1. For sufficiently low energies, it is described by a spectrum 
consisting of phonons, as in a solid. But for energies near the upper cutoff, 
which in our model is the Planck energy mpc 2, the spectrum has a dip. 
Quasiparticles described by this part of the energy spectrum are called rotons, 
and since at the minimum of the dip d E I d k  = 0, the rotons must have a small 
velocity. The height of  the minimum of the dip can be viewed as an energy 
gap A, which by order of magnitude is A -- mpc 2. With the width Ak of the 
dip of the order --rff 1, the excited state of rotons behaves like a fluid of free 
particles, with each roton mass approximately equal to mp and having the 
gravitational charge x/-Gmp. A fluid composed of rotons has a finite pressure 
even if the velocity of the rotons vanishes. Because a finite pressure can 
mimic a cosmological constant, a roton fluid can mimic a cold gas composed 
of low-velocity particles, with a superimposed cosmological constant. 

Near the minimum at k = k0, (2.1) has the form 

h2(k  - ko) 2 
E = hto = A + (3.1) 

2mr 

where mr ~ mp is the roton mass. The rotons to the right of the minimum 
at k -- k0 are called the R + rotons, and those to the left the R- rotons. The 
velocity of the rotons is the group velocity 

%c2~ . . . . . . . . . . . . . . . . .  o . ~ 1 7 6 1 7 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 1. The phonon-roton energy spectrum of the maximon fluid. 
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d e  h ( k  - ko) 
v - - (3.2) 

d k  m r 

and their momentum is 

P = Po + m y  (3.3) 

where P0 = hk0 is the momentum at k = k0 and where v = 0. 
Davis et  al. (1985, 1988) have shown that a very good match for the 

observed matter distribution in the universe is obtained if the contribution 
of a cosmological constant (A) to f~ is f~A ----- 0.8 + 0.1, and that of cold 
dark matter (CDM) is f~CDM = 0.2 --+ 0.1, making f~A + f~CDM = 1. This 
twofold requirement, needed to reach 1~ = 1, is the so-called D~-problem 
(Kolb and Turner, 1990). It is the strange property of the rotons that they 
are able to account for both contributions, making them a unique candidate 
to account for the missing mass. 

According to (3.1) and (3.2), the total energy of a roton is 

1 z 
E = A + -~ m~v (3.4) 

For relativistic roton energies, it can be written as follows: 

E = (A - mr c2) q- mrC2 (3.5) 
( 1  - v2/cb ll2 

with the first term making the contribution to f~A and the second one that 
to f~CDM. To obtain values for A and m r, needed to estimate the contributions 
~ a  and f~CDM to l-l, we assume that the phonon-roton spectrum is universal. 
Under this assumption, we can use the phonon-roton spectrum obtained from 
measurements in superfluid liquid helium by Henshaw and Woods (1961). 
According to these measurements, one has A = 0.52mpc 2 (equating the Debye 
energy with the Planck energy mpc 2) and mr --- 0.16mp (equating the helium 
mass with the Planck mass rap). Inserting these values into (3.5), one finds 
for the energy of a roton 

E 0.16 
- -  = 0.36 + (3.6) 
mpc 2 (1 - v 2 / c 2 )  112 

From this expression, one immediately sees that ~-~A ~ 0.7 and f~CDM ----- 0.3, 
with f~A + flCDM = 1. This is a surprisingly good agreement with the 
empirical values 12A = 0.8 _+ 0.1 and f~CDM = 0.2 +-- 0.1, to explain the 
matter distribution in the universe)  

3The values for OA and D-.CDM are actually somewhat smaller to make room for cold baryonic 
matter, having a fraction less than O. 1. The contribution coming from hot baryonic matter is 
much smaller still, possibly as small as --10 -3. 
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A roton number density equal to np = 2 • 10 -25 cm -3, with a roton 
mass mr ~< mp --- 2.2 X 10 -5 g, would be sufficient to reach the critical 
density p = 4.5 x 10 -30 g/cm 3 needed to make 12 = 1. At this number 
density the distance in between two rotons would be n p  113 ~ 1700 km. This 
low number density, combined with their weak gravitational interaction, 
would make a direct detection of the rotons very difficult. 

4. T H E  ROTATION CURVES OF DISC GALAXIES 

Because the mass of the rotons is large, the velocity of the rotons relative 
to the galaxies must be small. Rotons in the intergalactic space fall toward 
the center of galaxies, and because of their very small cross section, they 
thereafter flow radially out. If the mass density of the rotons at a large distance 
r0 measured from the center of attraction is P0 and their velocity at this 
distance is Vo, their mass density p at the distance r is 

Because the missing nonbaryonic mass is about 10 times larger than the 
baryonic mass, we can assume that the value of P0 is equal to the critical 
density for f~ = 1. 

With (4.1), the gravitational potential is obtained from Poisson's equation 
in spherical coordinates: 

r 2 dr  rZ-~r = 4~rGp (4.2) 

To compute the velocity for the rotons falling into the gravitational 
potential, we have to consider the dynamic behavior obtained from their 
dispersion relation (3.1), with the roton velocity given by their group velocity 
do~ldk. 

The equation of motion of the rotons falling into a centrally symmetric 
gravitational potential qb is 

mr ~ - ~  = (4.3) 

With d/dt  = (dr~dO d/dr  = v d /dr  = (dco/dk) d/dr, one obtains from (4.3) 
by integration 

(&o/dk)  2 =  v 2 = - 2 +  (4.4) 

valid for both the R § and R- rotons, with p the gravitational potential at the 
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distance r. In spite of their unusual dispersion relation, the rotons, like any 
other form of matter, obey the equivalence principle. 

At the distance r = ro, where + = 40, the velocity v = v0 shall be 
related to Hubble 's  law 

where 

Vo = Hro (4.5) 

H = (87rGpo/3) t/2 (4.6) 

is the Hubble constant with P0 set equal to the value for which ~ = 1. From 
(4.4)-(4.6), one has 

4o = - (  4 ~r / 3 )Gpor~ (4.7) 

With (4.1) and (4.7), (4.2) becomes 

d d+ - 3 4 0  (4.8) dr  re = 

Putting r/ro = x, 4 /40  = Y, we can write (4.8) as follows: 

dxx x2 = ~ (4.9) 

with the boundary condition y = 1 at x = 1. Introducing the new variable 

u = 1 - 3 1 n x  (4.10) 

we find that (4.9) becomes 

- -  x ( 4 . 1 1 )  

with y = 1 at u = 1. With the substitution (4.10), we can also write (4.11) 
as follows: 

dZy dy 1 
- 3  ~ + du - , f y  (4.12) 

by which the independent variable u has been eliminated. 
For (4.12), we seek solutions of  the form 

y = ~ a,u n (4.13) 
n 

For x --~ 0, that is, for r --~ 0, one has u ~ ~. Therefore, if u --~ w, only 
the highest power n contributes to the solution of (4.12). 
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In the limit u ~ ~, dZy/du 2 can therefore be neglected against dy/du, 
and one obtains 

lim y = (3]2)2/3u 2/3 (4.14) 

Hence 

lim +/+o  = {312 [! - 3 ln(r/ro)]} 2/3 (4.15) 
r-~O 

By inserting into (4.12) for d2y/du 2 and ~/y the asymptotic solution 
(4.14), one obtains the approximate differential equation 

- - -  [u -1/3 - u -4/3] (4.16) 
du 

For u ---) ~, it has the same asymptotic solution as the exact differential 
equation. It therefore describes the departure from this asymptotic solution. 
By integration of (4.16), one obtains the approximate solution: 

Y~-(3)2/3uZ/3[1  + ~ ]  
(4.17) 

Higher approximations obtained by this iteration procedure lead to solutions 
of the form 

y ~ /A 2/3 ~ anlA - n  

n=O 
(4.18) 

In applying these results to the rotation curves of disc galaxies where 
r < <  r0, it suffices to take the first term in the expansion of (4.18), which 
is the asymptotic solution (4.14): 

d+ _ 2(3/2) 2/3 +_._20 

dr [1 - 3 ln(r/ro)] I/3 r 
(4.19) 

If the gravitational force acting on the visible matter of the galaxy is 
mainly determined by the mass of the rotons, then - d + / d r  has to be equated 
with the centrifugal force per unit mass, V2/r, where V is the azimuthal 
velocity of the visible matter. One therefore has 

const 
V = (4.20) 

[1 - 3 ln(r/ro)] 1/6 
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For r < <  r0, this is 

V = const  �9 [In(ro/r) 3] - 1/6 (4.21) 

showing a weak logar i thmic  dependence  o f  V on r, in qual i ta t ive agreement  
with the observed fiat rota t ion curves.  

With the help  o f  (4.6) and (4.7), one obta ins  

V = (3/2)lt3Hr~ (4.22) 
[ 1 - ln(r/ro) 3] l/6 

With H = 150 krn/sec/106 l ight -years ,  r0 = 106 l ight-years ,  and r "='- 
105 l ight-years  ( typical  radius  o f  a disc ga laxy) ,  one f inds V = 130 km/sec,  
in good agreement  with the obse rved  rota t ion veloci t ies .  
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